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Abstract Acid-catalyzed ester hydrolyses were studied

by means of DFT calculations. A model composed of ester

and H3O?(H2O)15 was adopted, and substrates esters are

ethyl acetate, ethyl para-X-substituted benzoates (X =

O2N, Cl, H, iso-Bu, MeO, and Me2N), and isobutyl ben-

zoate. For the ethyl acetate, a stepwise path, precursor ?
TS1 ? Int1 ? Int2 ? TS2 ? product, was obtained.

Here, TS is the transition state, and Int is the tetrahedral

intermediate. The path is somewhat different from the

established AAC2 mechanism; the carbocation intermediate

was calculated to be absent in the present model. The

absence holds even for benzoates that may stabilize the

cation except the X = Me2N substituted one. At each local

energy minimum, the cation character is retained in H3O?.

Proton relays along hydrogen bonds were found to prompt

interchanges of covalent bonds. The rate-determining step

is either TS1 for the electron-withdrawing X or TS2 for the

electron-donating one.

Keywords Ester � Acid-catalyzed � Hydrolyses �
DFT calculations � Ethyl acetate � Ethyl benzoates �
Transition state � Hydrogen bond

1 Introduction

The hydrolysis of esters in the presence of a dilute acid

(such as hydrochloric acid or sulfuric acid) is a well-known

reaction as (1) shows [1–4].

R�CO�OR0 þ H2O�!Hþ R�CO�OH þ HO�R0

ð1Þ

Ethyl acetate, H3C–COOC2H5, is a typical ester for the

hydrolysis. Ethyl benzoate esters have been also used

as reactants to study the kinetics of the hydrolysis [5]. In

the water–acetone binary solvent, activation energies of

reactions of ethyl benzoate, para-nitrobenzoate, and para-

tolyl ethylbenzoate are 20.3, 19.7, and 20.4 kcal/mol,

respectively.

The AAC2 mechanism of the hydrolysis involving the

tetrahedral intermediate [6] seems to be established as

depicted in Scheme 1 [7]. By the use of the methanol

enriched in the mass 18 isotope of oxygen [8], cleavage of

the O=C…OMe bond was proved. The hydrolysis of acyl

derivatives like esters and amides with nucleophiles

received much attention because of their importance in

enzyme-catalyzed reactions [9].

In our previous work, the neutral reaction was examined

by the use of a model composed of the ethyl acetate and

(H2O)n (the number of water molecules, n = 1–4, 9, and

16) [10]. The n = 4 based reaction models were found to

give likely reaction paths (Scheme 2). A stepwise path via

TS1 and TS2 was calculated to be more favorable than a

concerted one.

The acid-catalyzed hydrolyses of para-substituted ben-

zoate esters in near-critical water (250–300 �C) were

investigated [11]. They showed autocatalytic kinetic

behavior and unexpectedly gave the same rate constant

regardless of the substituent. For the isobutyl benzoate
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substrate, Ph–CO–O(iBu), the activation energy was esti-

mated to be 24.14 ± 3.11 kcal/mol. This value is larger than

19.63 kcal/mol for the reaction of the ethyl benzoate in the

ethanol–water solvent [5]. Hydrolyses of para-substituted

isobutyl benzoates were reported to be of the acid-catalyzed

mechanism [11].

In spite of the well-known reaction, precise pictures of

the AAC2 mechanism are still unresolved. In particular,

movement of the proton along hydrogen bonds in the water

cluster needs to be elucidated. Presence or absence of the

carbocation intermediate might depend on the electron-

donating strength of the substituent R. In this work, the

acid-catalyzed ester hydrolyses were studied by means of

DFT calculations in order to consider the above questions.

Various ester substrates were adopted to examine the

presence or absence systematically.

2 Method of calculations

The reacting systems were investigated by density func-

tional theory calculations. The B3LYP method [12, 13]

was used. B3LYP seems to be a suitable method, which

includes the electron correlation effect to some extent. The

basis sets employed were 6-31G(d) and 6-311G(d,p),

because the present systems are large (for the largest

stoichiometry C13H51O18(?), 895 basis functions of

6-311G(d,p) used in the geometry optimizations) and cal-

culations by the higher-level basis set than 6-311G(d,p) are

too difficult. Transition states (TSs) were sought first by

partial optimizations at bond interchange regions. Second,

by the use of Hessian matrices, TS geometries were opti-

mized. They were characterized by vibrational analyses,

which checked whether the obtained geometries have sin-

gle imaginary frequencies (t�s). From TSs, reaction paths

were traced by the intrinsic reaction coordinate (IRC)

HO

R C O

HO

R C O

H2O

H2OC2H5 C2H5+

H O
H

O HR C

O

H
R

HO

OH

C O

HO

R C O

H2O

C2H5C2H5C2H5 ++

HO

R C O

HO

R C OHOR

O

C C2H5C2H5C2H5 +
+

+

+

++

+

+

+

precursor i a i b

i b i c

i c i d product

AAC2

Scheme 1 The AAC2

mechanism traditionally

considered for the acid-

catalyzed ester hydrolysis. Here,

A denotes acid, and the

subscript AC indicates acyl-

oxygen fission. The digit 2

indicates the bimolecular nature

of the rate-determining step.

ia, ib, ic, and id stand for

intermediates

ester + (H2O)9

TS1

TS2

tetrahedral intermediate

AcOH + EtOH + (H2O)8

Scheme 2 A reaction scheme of the neutral hydrolysis of ethyl

acetate ester reported in our previous work [10]. In ester ?(H2O)9,

four orange color H2O molecules stand for reactant ones, and five
green ones do for catalytic ones. At TS1 and TS2, red color arrows
show movements for the stepwise process. At TS1, green color
arrows for the concerted process
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method [14, 15] to obtain the energy-minimum geometries.

Relative energies DE were obtained by single-point cal-

culations of RB3LYP/6-311?G(d,p) [self-consistent reac-

tion field (SCRF) = PCM, [16–18] solvent = water] on

the RB3LYP/6-31G(d) geometries and their ZPVE(zero-

point vibration energy) ones. For two TSs, TS1(Me) and

TS2(Me), of Fig. 2, RB3LYP/6-31G(d) SCRF = PCM,

RB3LYP/6-311?G(d,p), and M062x/6-311G(d,p) [19]

optimizations and the subsequent IRC calculations were

also carried out. From the two TSs, classical trajectory

calculations using the atom-centered density matrix prop-

agation molecular dynamics (ADMP) model [20–22] were

conducted.

All the calculations were carried out using the

GAUSSIAN 09 [23] program package. The computations

were performed at the Research Center for Computational

Science, Okazaki, Japan.

3 Results and discussions

3.1 Hydrolysis of ethyl acetate (R = H3C)

Scheme 3 shows the way of constructing models of

(a) neutral and (b) acid-catalyzed reactions. They are

composed of ester(H2O)16 and ester(H3O?)(H2O)15,

respectively, and are isoelectronic. Lone-pair orbitals of

carbonyl and acyl oxygen are connected to the water

cluster by hydrogen bonds. As a reference to the acid-

catalyzed reactions studied in this work, the neutral one

(‘‘-N’’) was re-examined first on the basis of Scheme 3a.

In the previous study [10], only TS1 and TS2 were reported

and IRC calculations were not performed. Their results are

shown in Figure S1 (Supporting Information). In the Fig-

ure, the stepwise path is exhibited. Likewise, on the basis

of Scheme 3b, acid promoted paths were sought. Figure 1

shows the calculated concerted path. The reactant like

complex is ‘‘precursor-a(Me).’’ From it, TS(Me) was

obtained. After TS(Me), ethanol and acetic acid molecules

are evolved at ‘‘product-a(Me).’’ The concerted path in

Fig. 1 is different from the AAC2 mechanism in Scheme 1

and would be less favorable than the stepwise one. How-

ever, as far as the two paths coexist, their superiority or

inferiority needs to be examined on an equal footing.

Figure 2 exhibits geometric changes along the stepwise

path. From precursor-b(Me), TS1(Me) was obtained. After

TS1(Me), the tetrahedral intermediate Me–C(OH)2–OEt,

Int1(Me), was brought about. Noteworthy is that the car-

bocation ib in Scheme 1 was not found. The cation char-

acter is retained in H3O?. The hydronium ion may be

shifted along O–H…O hydrogen bonds, and the conversion

of Int1(Me) to Int2(Me) around Me–C(OH)2–OEt is a

facile process. From Int2(Me), product-b(Me) was afforded

via TS2(Me). Main distances in TS1(Me) and TS2(Me) are

shown in Table 1. The stepwise path shown in Fig. 2 is

somewhat different from the AAC2 mechanism. The difference

was examined by the other three DFT methods, RB3LYP/6-

31G(d) SCRF = PCM, RB3LYP/6-311?G(d,p), and M062x/

6-311G(d,p). Their results of TS1(Me) and TS2(Me) are dis-

played in Table 1. IRC calculations by the three methods gave

the same stepwise paths as those by RB3LYP/6-31G(d) and

RB3LYP/6-311G(d,p). In the present large system, Me–CO–

OEt ? H3O
?(H2O)15, there would be many local minima.

Dynamical calculations of RB3LYP/6-31G(d) ADMP on

TS1(Me) and TS2(Me) were carried out. Geometries at 2,000

steps in 0.1-femtosecond time step from TS1(Me) to TS2(Me)

are shown as ADMP-1 and ADMP-2, respectively, in Figure S7

(Supporting Information). The geometry of ADMP-1 is almost

the same as that of precursor-b(Me) in Fig. 2. Also, the

geometry of ADMP-2 is close to that of Int2(Me). Thus, the

present stepwise path seems to be meaningful.

Intervention of the carbocation ia or ib (Scheme 1) was

examined by a model composed of the protonated ester and

(a)

(b)

Scheme 3 Model construction to seek (a) neutral and b acid-

catalyzed reaction paths
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(H2O)7. Its assumed geometry is shown in the upper of

Figure S8 (Supporting Information). An optimization of the

initial geometry leads to the form of ester and H3O?(H2O)6

in the lower. The calculated result means that the water

cluster is a stronger proton acceptor than the ester.

Figure 3 shows energy changes along the acid-catalyzed

concerted and stepwise paths. Those of the neutral stepwise

one are also exhibited. TS(Me) of the concerted path has a

large activation energy (=?40.18 kcal/mol). The path was

confirmed to be unlikely. Those of the stepwise paths

indicate the catalytic effect on activation energies (DE�s).

For the acid-catalyzed reaction, TS2(Me) is the rate-

determining step with DE� = ?19.18 kcal/mol. This cal-

culated value is somewhat larger than the experimental

one, 16.20 kcal/mol [5]. The deviation will be discussed in

the next sub-section by the use of the isobutyl benzoate

substrate. The small energy difference between precursor-

b(Me) and product-b(Me), 0.734 kcal/mol, corresponds to

the reversibility of the hydrolysis.

As far as the present model of ester H3O?(H2O)15 is

concerned, the geometric changes in Fig. 2 have a feature

different from the AAC2 mechanism. It is necessary to

examine whether the difference holds for the other ester

substrates.

3.2 Hydrolysis of ethyl benzoates (R = aryl)

Figure 4 exhibits geometric changes of the stepwise reac-

tion of ethyl benzoate (R = Ph). They were found to be

similar to those in Fig. 2 (R = Me). The process, precur-

sor(Ph) ? TS1(Ph) ? Int1(Ph) ? Int2(Ph) ? TS2(Ph)

? product(Ph), is composed of bond interchanges and

concomitant proton relays along hydrogen bonds. The

carbocation intermediate (ib in Scheme 1) was not formed

in spite of its stability through the resonance inside the

phenyl ring. The cation H3O? is retained in precursor(Ph),

Int1(Ph), Int2(Ph), and product(Ph). Energy changes (DEs)

are also shown in Fig. 4 and indicate that TS2 with

DE� = 25.10 kcal/mol is the rate-determining step. It is

only slightly larger than DE� of TS1 (=?24.90 kcal/mol).

The former value is larger than the experimental one,

19.63 kcal/mol [5]. In order to evaluate the reliability of

the calculated activation energy, a reaction of the similar

substrate, the isobutyl benzoate [Ph–CO–OCH(Me)(Et)],
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Fig. 1 Geometric changes for the concerted path of H3C–COOC2H5 ?

H3O?(H2O)15 ? H3C–COOH ? HO–C2H5 ? H3O?(H2O)14. The

symbol (Me) stands for R = Me in the R–COOEt substrate. At TS(Me),

red and blue dotted lines show covalent bonds cleaved and formed,

respectively. Bond distances without and with square brackets are of

B3LYP/6-31G(d) and B3LYP/6-311G(d,p), respectively
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Fig. 2 Geometric changes for the stepwise path. Main distances, R1–R12, depicted in TS1(Me) and TS2(Me) are given in Table 1. DS� and DS�

are entropy changes in cal/(mol K) calculated by RB3LYP/6-311?G(d,p)
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was investigated. Its activation energy, 24.13 ± 3.11 kcal/

mol, was obtained by the acid-catalyzed hydrolysis in near-

critical water [11]. Figure S2 in Supporting Information

shows the calculated results. TS2 \ Ph–CO–O(iBu)[ is

the rate-determining step with DE� = ?26.91 kcal/mol.

This value is in the range of the experimental one, and the

calculated energies would be meaningful.

Substituent effect of the para position of the benzoate

ester on the activation energy was investigated. Substitu-

ents adopted are methoxy(MeO), isobutyl(iBu), chloro(Cl),

and nitro(O2N) groups. TS1 and TS2 of these benzoates are

shown in Figures S3(MeO), S4(iBu), S5(Cl), and S6(O2N)

in Supporting Information. The four substituents give TS

geometries similar to that of the parent benzoate ester

Table 1 Main distances

(R1–R12 in Å) and sole

imaginary frequencies (t�s in

cm-1) in TS1(Me) and TS2(Me)

of Fig. 2 calculated by

5 methods

Figure 2 Distances

and t�s

B3LYP/

6-31G(d)

B3LYP/

6-311G(d,p)

B3LYP/6-31G(d)

SCRF = PCM

B3LYP/

6-311?G(d,p)

M062x/

6-311G(d,p)

TS1 (Me) R1 1.698 1.733 1.734 1.775 1.720

R2 1.002 0.989 0.999 0.986 0.983

R3 1.603 1.654 1.695 1.690 1.546

R4 1.023 1.004 1.005 1.000 1.019

R5 1.582 1.629 1.600 1.677 1.457

R6 1.022 1.004 1.019 0.998 1.038

R7 1.833 1.745 1.784 1.699 1.879

R8 1.050 1.045 1.045 1.056 1.013

R9 1.508 1.485 1.531 1.456 1.568

t� 152.5 i 149.9 i 181.6 i 132.2 i 202.3 i

TS2 (Me) R7 1.311 1.314 1.309 1.327 1.296

R8 1.491 1.417 1.527 1.062 1.416

R9 1.049 1.066 1.039 1.422 1.052

R10 1.791 1.743 1.771 1.747 1.788

R11 1.225 1.234 1.291 1.073 1.084

R12 1.207 1.182 1.156 1.400 1.343

t� 534.7 i 505.9 i 582.0 i 169.6 i 188.6 i

-10.00 
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50.00 

precursor-a,b,N (Me)

TS1 (Me)

product-a (Me)

TS2 (Me)
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Int1 (Me)

Int2 (Me)

ΔE
  (

kc
al

/m
ol

)

product - b (Me)

H3C-COOC2H5 + H3O+(H2O)15→H3C- COOH + HO- C2H5+ H3O+(H2O)14

H3C -COOC2H5+ (H2O)16 →H3C-COOH + HO-C2H5 + (H2O)15

product- N (Me)

TS1 -N(Me)
TS2-N (Me)

Int1-N (Me)

Int2-N (Me)

Fig. 3 Energy changes of

concerted (Fig. 1) and stepwise

(Fig. 2) acid-catalyzed paths

calculated by B3LYP/6-

311?G(d,p) SCRF = PCM//

B3LYP/6-31G(d). Those of the

neutral one (Figure S1) are also

shown by the sign ‘‘-N’’[e.g.,

TS1-N(Me)]. DE is the energy

difference of the sum of the

B3LYP/6-31G(d) zero-point

vibration energy and the single-

point B3LYP/6-311?G(d,p)

SCRF = PCM electronic

energy
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Fig. 4 The stepwise path of the acid-catalyzed hydrolysis of ethyl benzoate. DEs are energy changes
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(Fig. 4). Through IRC calculations, the processes, precur-

sor ? TS1 ? Int1 ? Int2 ? TS2 ? product, were again

obtained. The carbocation ib was not found in hydrolyses of

those para-substituted benzoate esters.

For ester substrates with electron-donating para sub-

stituents, MeO and iBu, DE�(TS2)s are slightly larger than

DE�(TS1)s, e.g., DE�(TS1) = ?25.92 kcal/mol and

DE�(TS2) = ?26.19 kcal/mol for the MeO substituent in

Figure S3. In contrast, for those with electron-withdrawing

groups, O2N and Cl, TS1s were found to be respective rate-

determinig steps. Although the cation ib is absent, its

character is involved in TS1, and the electron-donating

substituents enhance the character and lower DE�(TS1)

values.

It is noteworthy that the activation energies at the rate-

determining steps are similar, e.g., DE�(TS2, Ph) =

?25.10 kcal/mol (Fig. 4), DE�(TS2, MeO–C6H4) = ?26.19

kcal/mol (Fig. S3), and DE�(TS1, O2 N–C6H4) = ?24.44

kcal/mol (Fig. S6). The similarity corresponds to the ‘‘sur-

prising same rate constant regardless of substituent’’ [11] and

comes from compensation effect of proton and HO- affinities

(PA and HOA) shown in Fig. 5. In a simple scheme, the

tetrahedral intermediate is formed via the addition of both H?

to the carbonyl oxygen and HO- to the carbonyl carbon at

TS1. Each substituent has superiority or inferiority for PA and

HOA, which nearly levels off DE� values. TS2 is regarded

simply as removal of H? and EtO- from the tetrahedral

intermediate. Then, in terms of the reverse use of PA and

HOA, the leveling off may hold for TS2.

In order to examine possibility of the carbocation ib, the

strongest (in the Hammett constant) electron-donating para

substituent, Me2N, was adopted. The calculated TS

geometries are exhibited in Fig. 6. In addition to TS1 and

TS2, TS0 was obtained. TS0 is for the proton (H34)

transfer to the carbonyl oxygen (O6), which leads to the

carbocation, ib. Thus, as an extreme case, the cation was

found to stay prior to formation of the tetrahedral inter-

mediate. For the X = Me2N para substituent, therefore, the

reaction consists of precursor ? TS0 ? ib(carbocation) ?
TS1 ? Int1 ? Int2 ? TS2 ? product.

4 Concluding remarks

In this work, the acid-catalyzed ester hydrolyses were

studied by means of B3LYP calculations. A model com-

posed of ester and H3O?(H2O)15 was adopted to trace the

reaction path. Substrates esters are ethyl acetate, ethyl para-

X-substituted benzoates (X = O2N, Cl, H, iso-Bu, MeO,

and Me2N), and isobutyl benzoate. For the ethyl acetate,

concerted and stepwise paths were obtained. The stepwise

one was confirmed to be much more likely. It was found to

be somewhat different from the traditional AAC2 mecha-

nism. Typically, the carbocation ib is absent, and the cation

PA(kcal/mol)

Hammett σ constant
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is retained in H3O? of local energy minima (precursor,

tetrahedral intermediate, and product) in the present model

of ester H3O?(H2O)15. The retention was also obtained for

the aryl substrate, although intervention of the carbocation

was expected owing to stabilization of canonical resonance

structures. Exceptionally, ethyl para-dimethylamino-

benzoate gives the cation as an extreme case. Scheme 4

illustrates a minimal model composed of the ester and

H3O?(H2O)2, which have been derived from the present

calculations. Proton transfers along hydrogen bonds

give ready interchanges of covalent bonds for the

hydrolysis. It should be noted that the present results

were obtained by the cluster model calculations and are

not necessarily pertinent to the reactivity in the water

solution.
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